
PEKO:基於軟體度量之模糊測試能量規劃
PEKO:Software-metric-basedPowerScheduleforFuzzing

Abstract
Fuzz testing has become an integral part of software testing
and vulnerability mining. Especially in vulnerability mining,
human experts usually leverage a fuzzer to find a crash rapidly
while conducting code audit or reverse engineering. Although
cur r e nt fu z z te s ting m e thods are efficie n t , they still
unavoidably waste energy on trivial states when a program
under test (PUT) is complex. We believe the waste of energy is
mainly because a fuzzer lacks knowledge about a program.
While it is challenging for a human expert to intervene in
fuzzing processes, properly guiding a fuzzer would be the key
to improving fuzzing performance. This study introduces a
power schedule based on a new software metric called
Procedure Error Key Omen (PEKO) to guide fuzzing processes. It
drives the fuzzer to focus on possibly essential functions in a
PUT by calculating the estimated PEKO value of the executed
functions. PEKO values can be further fine-tuned by either
human experts or external software analysis tools. Based on
the feedback from humans and alternative external sources,
the fuzzer can focus more on interesting parts of a PUT without
wasting fuzzing resources. We integrated our PEKO power
schedule into the AFL++ fuzzer, which can reach vulnerabilities
in our experiments more quickly than other power schedule
and it found 1 CVE in nm-new.

Summary

Motivation

Evaluation: CVE-2021-364

國立陽明交通大學資電亥客與安全碩士學位學程
研究生 ：陳廷宇
指導教授：黃俊穎 教授

PEKO Power Schedule

The efficiency and performance of a fuzzer highly depend on the
quality of test cases fed to a PUT. Good test cases lead fuzzers to
reveal hidden vulnerabilities in a PUT. In contrast, poor test cases
waste resources on running useless test loops. A straightforward
idea to improve the performance of a power scheduler is to clas-
sify codes implemented in a program as interesting or uninteresti-
ng and spending more time exploring interesting parts. Uninteres-
ting functions are generally well-tested implementations, such as
standard implementation of hash, encoding or encryption. On the
other hand, a program also has functions which are more likely to
contain faults. While most of the current power schedulers only
use runtime states to perform test case scheduling and are agnos-
tic about the Program Under Test (PUT), causing them to give the
same weight on the edges from uninteresting functions and
dangerous functions. We believe that power scheduling with
program structure awareness is beneficial to fuzzing performance.

The CVE-2021-3648
was found during
fuzzing the nm-new
of the binutils, the bug
is that nm-new stuck
in a infinite loop while
demangling a malform
rust symbol, which
cause the nm-new crash due to resource exhausted. We use
the minimal time a fuzzer instance needs to get the first hang
and the first crash to indicate when a fuzzer instanse triggered
the CVE-2021-3648. In the figure we can see that the PEKO
power schedule can trigger the bug more earlier than other
power schedules in average time.

This thesis propose a new power schedule base on our new software metric, Procedure Error Key-Omen, aka PEKO which can be 
intergrated into a fuzzer as a metric for power schedule easily to aid power schedule. And we also implement a PEKO power schedule 
which leverage the PEKO software metric to distribute the energy among seeds more objectively. Compare with the power schedule, 
which would try to spent more energy on those path which are rarely explored, that cause it to withdraw the energy from path those 
are frequently visited. Without taking the potential of a path to find a bug or explore more states into account, that would cause a 
fuzzer to stop fuzzing on some valuable path thus extending the time to find a bug. What's more, because of the nature of the PEKO
power scheduler, a human expert can affect the energy allocation of a fuzzer by just correcting the size of an array in IDA Pro or
labeling some function as secure or dangerous, that make the collaboration between a human expert and the PEKO power schedule
being continuous, any trivial information that can change the PEKO value is adequate, the fuzzer would find a way to increase the
code coverage by those scattered knowledge.

The architecture of AFL++ with our PEKO power schedule is
as the figture above. Before the fuzzer start fuzzing PUT, we
use the PEKO Metric Analyzer to leverage IDA pro to calculate
the PEKO value of each function of a binary executable file,
then feed the generated function list, which contains the
address of functions and their corresponding PEKO value, to
the fuzzer for PEKO power schedule to plan the distribution of
energy.

Evaluation: Woff2 issue 609042
The issue 609042 of
Woff2 is a Heap-based
buffered overflow vul-
Nerability. we can see 
that the PEKO power 
schedule performs bet-
ter than most of the 
strategies from AFLFast
and have similar average time with lin power scheduler from 
AFLFast.

The Woff2 is a static link
binary and contains lots of
functions, which can be c-
onsidered as well-tested. 
Because of that, we use 
the issue 609042 of Woff2 
to show the efficiency of a 
fuzzer with PEKO power 

scheduler after fine-tune. it shows that the beta, which is the
POKO power schedule with function labeling, has a better
average time compare with lin and PEKO without labeling.


